🦄九游娱乐(中国)网址在线握久灵验的叮咛仍然有限-九游娱乐(中国)网址在线
*仅供医学专科东说念主士阅读参考🦄九游娱乐(中国)网址在线
揭秘免疫微环境,开启诊疗新视线!
尽管免疫诊疗依然透顶改换了的诊疗关节,但在胃癌(GC)中,握久灵验的叮咛仍然有限。肿瘤微环境(TME)的异质性促使了免疫逃跑,从而导致对传统疗法和免疫诊疗的耐药性。了解潜在的分子机制并靶向免疫扼制性的TME,将有助于提高免疫诊疗的疗效并改善患者预后。该篇综述回想了胃癌TME接洽的最新进展,并提供了除免疫检查点扼制剂除外其他潜在诊疗关节,从而为GC的个性化诊疗提供新的念念路和关节。本文特将该综述要点梳理如下,以飨读者。
接洽布景
GC是大家发病率第5和升天率第4的恶性,患者的预后较差,5年生计率<10% [1-2] 。GC的发生发展受到遗传、感染、饮食习气和环境欺侮等一系列表里因素的共同影响。此外,特异性因素如GC中开动基因的变异、幽门螺杆菌感染,以及回荡性肿瘤细胞形成的恶性腹水等,均影响GC的进展 [3-4] 。尽管免疫检查点阻断(ICB)疗法为癌症诊疗带来了翻新性的更动,但针对晚期GC诊疗,免疫诊疗叮咛率依然有限。连年来,单细胞RNA测序(scRNA-seq)时期的速即发展逐渐深化了对GC肿瘤异质性和肿瘤免疫微环境(TIME)的通晓。同期,新兴的单细胞时期也为TIME的空间组织的接洽提供了机遇,为探索GC新式诊疗关节以及改善患者预后提供了新的但愿 [5-7] 。
TME中的基因组开动
通过对GC全基因组和全外显子组测序(WES)的深化接洽 [8] ,不仅再次考据了既往已知与GC密切筹商的突变基因,如TP53、ARID1A和CDH1,还进一步揭示了多种与GC亚型特异性筹商的突变基因,包括RHOA、MUC6、CTNNA2、GLI3、RNF43等基因。举例在一项基因工程小鼠模子中,敲除肿瘤扼制因子CDH1,RHOA突变大概带领肿瘤增殖和更具侵袭性的回荡后劲 [9-10] 。此外,另一项包含1335例GC患者的基因组分析揭示了亚型特异性的开动基因,如PIGR和SOX9,这两个基因在GC的足够亚型及恶性腹水着手的肿瘤细胞中显贵富集 [11-12] 。其中PIGR参与免疫球卵白A的转胞作用,与极性齐全性和粘膜免疫筹商 [13] 。而SOX9是GC中上调进程最高的SOX基因之一,且在原发性和回荡性GC中均抒发升高,已被一项前瞻性接洽证据为肠化生的毛病开动基因之一。这些发现突显了GC中基因组开动因素与TIME之间纵横交叉的相互作用关系。因此,对这些分子改换偏执对免疫调度影响的深化通晓,有望为成就新式诊疗计谋以克服免疫扼制、改善晚期GC患者预后开发新的说念路。
胃癌TME中的细胞与分子机制
胃癌TME是一个高度复杂的生态系统,主要由淋巴细胞、内皮细胞、癌筹商成纤维细胞CAFs)、髓系细胞[包括肿瘤筹商巨噬细胞(TAMs)、髓源性扼制细胞(MDSCs)和中性粒细胞]等构成。这些因素通过相互作用并分泌各类因子,显贵影响着癌症的进展与回荡。
在胃癌TME中,T细胞耗竭是一个显贵特征 [14-15] ,这种耗竭景色收缩了T细胞的抗肿瘤作用,使得肿瘤细胞难以被灵验断根,加快了肿瘤的握续进展与恶化。TME不仅扼制免疫叮咛,从而来禁止抗肿瘤免疫响应,还通过基质因素来促进肿瘤的发展。TAMs算作浸润于肿瘤组织中的巨噬细胞,通过参与肿瘤的发生、发展、侵袭、回荡流程,在肿瘤滋长、肿瘤血管生成、免疫调度等方面弘扬着紧迫作用 [16-18] 。举例,M2型TAMs通过分泌IL-10等炎症因子,促进免疫逃跑,并与患者不良预后筹商 [19-20] 。此外,TAM繁衍的CXCL8可通过带领GC中巨噬细胞上PD-L1的抒发来扼制CD8+ T细胞功能 [21] ,进一步影响肿瘤免疫逃跑和进展。MDSCs则通过多种机制促进肿瘤进展,包括上调GC细胞中的CXCL1抒发以及通过S100A8/A9弘扬免疫扼制作用。中性粒细胞在TME中也粗俗存在,与疾病进展筹商,并与患者生计呈负筹商 [22-23] 。CAFs算作TME中最丰富的基质细胞类型,通过带领慢性炎症景色和分泌免疫调度细胞因子,进一步股东了GC的肿瘤侵袭或耐药性。此外,ENS与癌细胞之间的粗俗串扰也对GC进展产生了紧迫影响,如增强癌细胞上PD-L1的抒发等机制,促进了免疫逃跑表象的发生。
因此,深化探究GC的TME这些细胞和分子机制之间的相互作用,关于成就新的诊疗计谋和提高患者生计率具有紧迫兴趣兴趣。
TME的代谢异质性
肿瘤细胞和免疫细胞的养分竞争激勉代谢重编程,进而产生免疫耐受。GC特异的RHOA Y42C突变在低葡萄糖条款下通过激活PI3K–AKT–mTOR信号通路加多游离脂肪酸生成,这些脂肪酸被调度性T(Treg)细胞期骗,裁减了对GC的免疫响应,请示代谢互异与分子特征筹商[24],可为GC患者遴荐特定诊疗关节提供萍踪。
此外,空间代谢组学、脂质组学与ST时期的详细分析暴露,肿瘤周围淋巴组织(PLT)的谷氨酰胺水平较迢遥淋巴组织(DLT)显贵裁减,而GLS基因和谷氨酰胺转运体基因SLC1A5在PLT中的抒发更高,标明谷氨酰胺被过度期骗。谷氨酰胺在调度免疫细胞(如巨噬细胞极化和T细胞活化)中弘扬毛病作用,有助于提高TIME中的抗肿瘤活性。同期,接洽发现组胺抒发裁减且浸润性免疫细胞缺少,组胺能增强T援救细胞1型(Th1)响应并促进髓系细胞分化以扼制肿瘤。这些发现为TIME内代谢物、脂质和基因抒发的空间特征提供了深化视力。
TME异质性的诊疗计谋
化疗仍然是晚期GC患者的基本诊疗技能,而免疫检查点扼制剂的进展为晚期GC诊疗带来了新的但愿。在多项Ⅲ期接洽中,免疫检查点扼制剂连络化疗显贵改善了晚期HER2阴性GC患者的生计结局。可是,大部分GC患者对PD-1/PD-L1或CTLA-4扼制剂的握久叮咛有限,这可能与GC的基因组景色或TME的异质性关联[25]。成纤维细胞活化卵白(FAP)高抒发已被细目为GC不良预后的预测因子[26],但平直靶向CAF符号物的诊疗关节在临床磨练中并未暴闪现显贵益处[27-28]。商量到CAFs在TIME中弘扬的作用,明天计谋应侧重于通过阻断CAF介导的免疫扼制来调度肿瘤免疫微环境(TIME)内的免疫叮咛,而非只是靶向特定CAF群集。
小分子多靶点酪氨酸激酶扼制剂(TKI),如瑞戈非尼等,也在GC诊疗中展现出后劲。这些TKI通过不同机制影响TIME,并与ICB连络使用,暴闪现增强的抗肿瘤活性[29]。嵌合抗原受体(CAR)-T疗法算作一种创新疗法,亦然现在GC规模的接洽热门之一。尽管CAR-T疗法在实体瘤中的灵验性仍然有限,但针对特定肿瘤筹商抗原(TAA)的CAR-T疗法,如CLDN18.2和CDH17,已在临床磨练中暴闪现令东说念主荧惑的成果[30-32]。这些疗法通过激活个体的T细胞来灵验靶向并列斥肿瘤,为GC患者提供了新的诊疗但愿。
·瞻望·
在TIME内,免疫细胞、间质细胞与肿瘤细胞间的存在着复杂的相互作用,给肿瘤增殖、迁徙及免疫逃跑提供了契机。因此针对GC的诊疗计谋,必须全面考量TME的异质性、免疫扼制组分,以及与传统免疫检查点阻断疗法或化疗的连络应用。此外,深化探究髓系细胞类型及CAFs的特定变装,关于精确靶向诊疗计谋的成就具有决定性兴趣兴趣。尽管现时GC诊疗技能,诸如ICB疗法和化学疗法,已初显奏效,但肿瘤免疫微环境的异质性仍是亟待克服的紧要吃力。通过精确靶向这些免疫扼制组分,有望进一步种植免疫诊疗的叮咛率,并改善患者的临床结局。
明天接洽应堤防于揭示GC中髓系细胞类型的异质性,相较于CAFs,这一规模的默契尚显不及。同期,应积极探索这些细胞群体中防碍的新式诊疗靶点,以期为患者带来新的诊疗但愿。
精彩资讯等你来
参考文件:
[1]Sung H et al. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin 71, 209–249
[2]Joshi SS and Badgwell BD (2021) Current treatment and recent progress in gastric cancer. CA Cancer J. Clin 71, 264–279
[3]Gwee YX et al. (2022) Integration of genomic biology into therapeutic strategies of gastric cancer peritoneal metastasis. J. Clin. Oncol 40, 2830
[4]Thrift AP et al. (2023) Global burden of gastric cancer: epidemiological trends, risk factors, screening and prevention. Nat. Rev. Clin. Oncol 20, 338–349
[5]Chen A et al. (2022) Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792
[6]He S et al. (2022) High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol 40, 1794–1806
[7]Janesick A et al. (2023) High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. Nat. Commun 14, 8353
[8]Wang K et al. (2014) Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet 46, 573–582
[9]Benton D and Chernoff J (2020) A new Rho(d) map to diffuse gastric cancer. Cancer Discov. 10, 182–184
[10]Zhang H et al. (2020) Gain-of-function RHOA mutations promote focal adhesion kinase activation and dependency in diffuse gastric cancer. Cancer Discov. 10, 288–305
[11]Totoki Y et al. (2023) Multiancestry genomic and transcriptomic analysis of gastric cancer. Nat. Genet 55, 581–594
[12]Tanaka Y et al. (2021) Multi-omic profiling of peritoneal metastases in gastric cancer identifies molecular subtypes and therapeutic vulnerabilities. Nat. Cancer 2, 962–977
[13]Johansen FE et al. (1999) Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J. Exp. Med 190, 915–922
[14]Miyagawa F et al. (2012) Interferon regulatory factor 8 integrates T-cell receptor and cytokinesignaling pathways and drives effector differentiation of CD8 T cells. Proc. Natl. Acad. Sci. USA 109, 12123–12128
[15]Liu Z et al. (2021) Genomic and transcriptomic profiling of hepatoid adenocarcinoma of the stomach. Oncogene 40, 5705–5717
[16]Kuroda T et al. (2005) Monocyte chemoattractant protein-1 transfection induces angiogenesis and tumorigenesis of gastric carcinoma in nude mice via macrophage recruitment. Clin. Cancer Res 11, 7629–7636
[17]Zhu Y et al. (2017) Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 597
[18]Zhou Z et al. (2019) A C-X-C chemokine receptor type 2-dominated cross-talk between tumor cells and macrophages drives gastric cancer metastasis. Clin. Cancer Res 25, 3317–3328
[19]Wang F et al. (2018) Tumor-derived exosomes induce PD1+ macrophage population in human gastric cancer that promotes disease progression. Oncogenesis 7, 41
[20]Zhang H et al. (2022) Poor clinical outcomes and immunoevasive contexture in intratumoral IL-10-producing macrophages enriched gastric cancer patients. Ann. Surg 275, e626–e635
[21]Lin C et al. (2019) Tumour-associated macrophages-derived CXCL8 determines immune evasion through autonomous PD-L1 expression in gastric cancer. Gut 68, 1764–1773
[22]Wu Y et al. (2011) Neutrophils promote motility of cancer cells via a hyaluronan-mediated TLR4/PI3K activation loop. J. Pathol 225, 438–447
[23]Wang TT et al. (2017) Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF–PD-L1 pathway. Gut 66, 1900–1911
[24]He W et al. (2017) CD155T/TIGIT signaling regulates CD8+ T-cell metabolism and promotes tumor progression in human gastric cancer. Cancer Res. 77, 6375–6388
[25]Wang R et al. (2023) Evolution of immune and stromal cell states and ecotypes during gastric adenocarcinoma progression. Cancer Cell 41, 1407–1426
[26]Kumar V et al. (2022) Single-cell atlas of lineage states, tumor microenvironment, and subtypespecific expression programs in gastric cancer. Cancer Discov. 12, 670–691
[27]Nugent FW et al. (2007) Phase 2 study of talabostat/gemcitabine in stage IV pancreatic cancer. J. Clin. Oncol 25, 4616
[28]Ho WJ et al. (2020) The tumour microenvironment in pancreatic cancer – clinical challenges and opportunities. Nat. Rev. Clin. Oncol 17, 527–540
[29]Pavlakis N et al. (2023) INTEGRATE IIa: a randomised, double-blind, phase III study of regorafenib versus placebo in refractory advanced gastro-oesophageal cancer (AGOC)–a study led by the Australasian Gastro-Intestinal Trials Group (AGITG). J. Clin. Oncol 41, LBA294
[30]Jiang H et al. (2019) Claudin18.2-specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. J. Natl. Cancer Inst 111, 409–418
[31]Qi C et al. (2022) Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat. Med 28, 1189–1198
[32]Feng Z et al. (2022) Potent suppression of neuroendocrine tumors and gastrointestinal cancers by CDH17CAR T cells without toxicity to normal tissues. Nat. Cancer 3, 581–594
审批编号:CN-146461 灵验期至:2025-03-31本材料由阿斯利康提供,仅供医疗卫生专科东说念主士参考
* 此文仅用于向医学东说念主士提供科学信息,不代表本平台不雅点